Language name and location: Kaike, Nepal [Refer to Ethnologue]

言名称和分布地区: 凯克, 尼泊尔

 

1.  ti

21.  ɲʰe-cyu-re-ti  

2.  ɲʰe

22.  ɲʰe-cyu-re-ɲʰe

3.  sum

23.  ɲʰe-cyu-re-sum

4.  li

24.  ɲʰe-cyu-re-li 

5.  ŋa

25.  ɲʰe-cyu-re-ŋa

6.  ru

26.  ɲʰe-cyu-re-ru

7.  ne

27.  ɲʰe-cyu-re-ne

8.  keː

28.  ɲʰe-cyu-re-ke

9.  ɡʰu

29.  ɲʰe-cyu-re-ɡʰu

10. cyu

30.  sum-cyu

11. cyu-ti

40.  ŋetʰəl

12. cyu-ŋʰe

50.  ŋetʰəl-re-cyu 

13. cyu-sum

60.  sumtʰəl

14. cyu-li

70.  sumtʰəl-re-cyu

15. cyu-ŋa

80.  litʰəl

16. cyu-ru

90.  litʰəl-re-cyu 

17. cyu-ne

100. ŋatʰəl

18. cyu-keː

200.  kyama-ŋe

19. cyu-ɡʰu

1000. kyama cyu or had͡ʒar ti

20. ɲi-cyu  

2000. kyama-ŋe or had͡ʒar ŋe 

 

Linguist providing data and dateː Dr. Ambika Regmi. Central Department of Linguistics,

Tribhuvan University, Nepal. August 7, 2013.

供资料的语言学家: Dr. Ambika Regmi, 2013 年 8 月 7 日.

 

Other comments: Kaike has a traditional vigesimal system.  It presents very interesting linguistic expressions in the derivation of higher numerals from the lower ones. It employs the mixtures of the arithmetic bases and other features such as addition and multiplication in the construction of higher numeral expressions. In this section, we discuss how they are organized semantically and integrated morphologically and syntactically into the grammar of Kaike.

Morphological properties:
The numerals in Kaike may be morphologically categorized into basic and derived. They are discussed as follows:
(a)
    Basic numerals

The basic numerals in Kaike include the linguistic expression of the numbers from 1 to 10, 40, 60, 80 and 100. The basic numerals do not undergo any morphological processes.  Following are the examples:

ti  

‘one’

øhe                     

two’

sum 

‘three’

li 

‘four’

Na                          

‘five’

ru

‘six’

ne

‘seven’

ke:                        

‘eight’            

gh

‘nine’

cyu

‘ten’

Nethəl                                 

‘forty’

pheraNe                 

‘fifty’

sumthəl

‘sixty’

lithəl   

‘eighty’

Nathəl                      

‘hundred’

(b)  Derived numerals

Apart from the numerals exemplified, the rest are derived from different arithmetic bases by compounding and other morphological processes. The numerals 11-19
are derived from the base ‘10’ plus some other numeral. The numeral /cyudi / ‘eleven’, for instance, is formed by adding /ti/ ‘one’ to the base /cyu/ ‘ten’. This is simply the compounding process.  Following are the examples.

/cyu-di / 

[cyu-ti ]

‘eleven’

/cyo-Ne/

[cyo-Nhe]

‘twelve’

/cyu-sum/

[cyu-sum]

‘thirteen’

/cyu-lli/

[cyu-li]

‘fourteen’

/cyor-Na/                  

[cyu-Na]      

‘fifteen’

/cyu-ru/                    

[cyu-ru]        

‘sixteen’

/cyo-nne/

[cyu-ne]

‘seventeen’

/cyor-ge/

[cyu-ke:]

‘eighteen’

/cyur-gu/                  

[cyu-ghu]        

‘nineteen’

However, there occur a number of morphophonological processes in the derivation of higher numerals assuming the lower numeral as the base.   In example, the voiceless alveolar stop /t/ has been changed into voiced alveolar stop in intervocalic position.  In example, the aspiration of velar nasal /ŋh/ is deleted in compounding.  Insertion of /r/ occurs in (e, h and i).

 In Kaike, the numerals ‘twenty’ and ‘thirty’ are formed by multiplying the base ‘10’ by two and three, respectively.  Following are the examples.

/øicyu/ 

[øi-cyu]

‘twenty’

/suncu/ 

[sum-cyu]

‘thirty’

In above example, not only bilabial nasal /m/ changes into alveolar nasal /n/, but the  segment /y/ from /cyu/ is also deleted.

In Kaike, the derivation of the higher numerals ‘forty’, ‘sixty’, ‘eighty’, and ‘hundred’ may be assumed with the base /thəl/. However, Kaike does not any independent value for this ‘base’.  There is already an independent compound expression for ‘twenty’ in Kaike. If we may simply posit the value of this base as ‘twenty’, we can derive forty, sixty, eighty, and hundred by multiplying the base by two, three, four and five, respectively. Following are the examples.

/øethəl/

[Ne-thəl]

‘forty’

/sumthəl/ 

[sum-thəl]

‘sixty’

/lithəl/

[li-thəl]

‘eighty’

/Nathəl/

[Nathəl]

‘hundred’

In Kaike, the numeral expressions for the numbers, 21-29, are constructed according to the pattern ... xn + y, i.e. some numeral x (i.e. 2) multiplied by the base (i.e. 10) and (plus) some other numeral (Comrie, 2008). Following are the examples:

/øicureti/               

[øhe-cyu-re-ti]         

‘twenty-one’

/øicureNe/              

[øhe-cyu-re-Nhe]     

‘twenty-two’

/øicuresum/          

[øhe-cyu-re-sum]     

‘twenty-three’

/øicureli/              

[øhe-cyu-re-li]         

‘twenty-four’

/øicureNa/             

[øhe-cyu-re-Na]       

‘twenty-five’

/øicureru/            

[øhe-cyu-re-ru]        

‘twenty-six’

/øicurene/             

[øhe-cyu-re-ne]       

‘twenty-seven’

/øicureke/              

[øhe-cyu-re-ke]       

‘twenty-eight’

/øicureghu/            

[øhe-cyu-re-ghu]      

‘twenty-nine’

As in Mandarin, Kaike also follows the decimal system in the derivation of the numerals 21-29.  The general structure of numerals in a decimal system is x10 + y. In Kaike, as in Diola-Fogny (Atlantic, Niger-Congo; Senegal) the numerals in (26a) may be expressed as ‘two tens and one’.

However, the numeral expressions for the numbers, 31-39, are constructed according to the pattern ... xn+n+y, i.e. some numeral x (i.e. 2) multiplied by the base (i.e. 10) plus the base (i.e.10) plus some other numeral. Following are the examples:

/øicurecyudi /

[øhe-cyu-re-cyu-ti]           

‘thirty-one’

/øicurecyoNe/          

[øhe-cyu-re-cyu-Ne]        

‘thirty-two’

/øicurecisum/                     

[øhe-cyu-re-cyu-sum]       

‘thirty-three’

/øicurecyurNa/                 

[øhe-cyu-re-cyu-Na]         

‘thirty-five’  

/øicurecyuru/                  

[øhe-cyu-re-cyu-ru]          

‘thirty-six’

/øicurecyone/                  

[øhe-cyu-re-cyu-ne]          

‘thirty-seven’

/øicurecyorke/                

[øhe-cyu-re-cyu-ke]        

‘thirty-eight’

/øicurecyurgu/                   

[øhe-cyu-re-cyu-ghu]       

‘thirty-nine’

In Kaike, the above numerals may be expressed as ‘two tens and  tens one’.

The numeral expressions for the numbers, 41-49, are constructed according to the pattern n and y, i.e., the base (i.e. 40) and some other numeral. Following are the examples:

/Nethəlreti/                         

[Nethəl-re-ti]       

‘forty-one’

/NethəlreNe/                       

[Nethəl-re-Ne]     

‘forty-two’

/Nethəlresum/                     

[Nethəl-re-sum        

‘forty-three’

/Nethəlreli/                        

[Nethəl-re-li]            

‘forty-four’

/NethəlreNa/                      

[Nethəl-re-Na]         

‘forty-five’

/Nethəlreru/                      

[Nethəl-re-ru]          

‘forty-six’

/Nethəlrene/                       

[Nethəl-re-ne]          

‘forty-seven’

/Nethəlreke/                      

[Nethəl-re-ke]          

‘forty-eight’

/Nethəlregu/                     

[Nethəl-re-ghu]         

‘forty-nine’

In Kaike, the numerals in above table may be expressed as ‘forties and one’.

The numeral expressions for the numbers, 51-59, are constructed according to the pattern taking the base (i.e. 40) and ten plus some other numeral. Following are the examples:

Nethəlrecudi                    

[Nethəl-re-cyu-ti]         

‘fifty-one’

NethəlrecyoNe                

[Nethəl-re-cyu-Ne]      

‘fifty-two’

Nethəlrecyusum            

[Nethəl-re-cyu-sum       

‘fifty-three’

Nethəlreli                       

[Nethəl-re-cyu-li]         

‘fifty-four’

NethəlrecyorNa              

[Nethəl-re-cyu-Na]       

‘fifty-five’

Nethəlrecyuru               

[Nethəl-re-cyu-ru]         

‘fifty-six’

Nethəlrecyone               

[Nethəl-re-cyu-ne]        

‘fifty-seven’

Nethəlreke                    

[Nethəl-re-cyu-ke:]       

‘fifty-eight’

Nethəlregu                   

[Nethəl-re-cyu-ghu]       

‘fifty-nine’

In Kaike, the numerals in (29a) may be expressed as ‘forties and tens one’.

The numeral expressions for the numbers, 61-69, are constructed according to the pattern taking the base (i.e. 40) and some other numeral. Following are the examples:

sumthəlreti                    

[sumthəl-re-ti]           

‘sixty-one’

sumthəlreNe

[sumthəl-re-Ne]         

‘sixty-two’

sumthəlresum

[sumthəl-re-sum]        

‘sixty-three’

sumthəlreli

[sumthəl-re-li]           

‘sixty-four’

sumthəlreNa

[sumthəl-re-Na]          

‘sixty-five’

sumthəlreru

[sumthəl-re-ru]           

‘sixty-six’

sumthəlrene 

[sumthəl-re-ne]          

 ‘sixty-seven’

sumthəlreke

[sumthəl-re-ke]          

‘sixty-eight’

sumthəlregu

[sumthəl-re-ghu]         

‘sixty-nine’

The numeral expressions for the numbers, 71-79, are constructed according to the pattern taking the base (i.e. 60) and ten plus some other numeral. Following are the examples:

sumthəlrecyudi

[sumthəl-re-cyu-ti]        

‘seventy-one’

sumthəlrecyoNe

[sumthəl-re-cyu-Ne]       

‘seventy-two’ 

sumthəlrecyosum

[sumthəl-re-cyu-sum]     

‘seventy-three’

sumthəlrecyoli

[sumthəl-re-cyu-li]        

‘seventy-four’

sumthəlrecyorNa

[sumthəl-re-cyu-Na]       

‘seventy-five’

sumthəlrecyuru    

[sumthəl-re-cyu-ru]       

‘seventy-six’

sumthəlrecyone          

[sumthəl-re-cyu-ne]       

‘seventy-seven’

sumthəlrecyorke

[sumthəl-re-cyu-ke]        

‘seventy-eight’

sumthəlrecyurgu        

[sumthəl-re-cyu-ghu]     

‘seventy-nine’

The numeral expressions for the numbers, 81-89, are constructed according to the pattern taking the base (i.e. 80) and some other numeral. Following are the examples:

lithəlreti 

[lithəl-re-ti]          

‘eighty-one’

lithəlreNe  

[lithəl-re-Ne]        

‘eighty-two’

lithəlresum  

[lithəl-re-sum]        

‘eighty-three’

lithəlreli                    

[lithəl-re-li]          

‘eighty-four’

lithəlreNa  

[lithəl-re-Na]        

‘eighty-five’

lithəlreru 

[lithəl-re-ru]          

‘eighty-six’

lithəlrene  

[lithəl-re-ne]        

‘eighty-seven’

lithəlreke     

[lithəl-re-ke]         

‘eighty-eight’

lithəlregu    

[lithəl-re-ghu]        

‘eighty-nine’

The numeral expressions for the numbers, 91-99, are constructed according to the pattern taking the base (i.e. 80) and ten plus some other numeral. Following are the examples:

lithəlrecyudi

[lithəl-re-cyu-ti]            

‘ninety-one’

lithəlrecyoN

[lithəl-re-cyu-Ne]           

‘ninety-two’

lithəlrecyusum

[lithəl-re-cyu-sum]         

‘ninety-three’

lithəlrecili               

[lithəl-re-cyu-li]            

‘ninety-four’

lithəlrecyarNa         

[lithəl-re-cyu-Na]         

‘ninety-five’

lithəlrecyaru           

[lithəl-re-cyu-ru]            

‘ninety-six’

lithəlrecyone          

[lithəl-re-cyu-ne]          

‘ninety-seven’

lithəlrecyorke         

[lithəl-re-cyu-ke]           

‘ninety-eight’

lithəlrecyurgu        

[lithəl-re-cyu-ghu]          

‘ninety-nine’

The numerals higher than hundred also follow the compounding system in Kaike. However, in such numerals /kyma/ refers to one hundred. The numeral ‘two hundred ’, for instance, is expressed as hundreds two. However, the numeral ‘two hundred fifty’ is expressed as hundreds two plus fifty. Following are the examples:

/kyamapheraNNe/        

[kyama-pheraNNe]    

‘one hundred fifty’

/kyamaNe/                   

[kyama-Ne]             

‘two hundred’

/kyamaNpheraN/    

[kyama-N-pheraN]   

‘two hundred fifty’  

/kyamasum/              

[kyama-sum]             

‘three hundred’

/kyamali/                   

[kyama-li]               

‘four hundred’

/kyamaNa/                  

[kyama-Na]              

‘five hundred’

/kyamaru/

[kyama-ru]

‘six hundred’

/kyamane/               

[kyama-ne]              

‘seven hundred’

/kyamake/               

[kyama-ke]              

‘eight hundred’

/kyamagu/               

[kyama-gu]              

‘nine hundred’

 


[1] Givón (2001:100) does not put ordinals (i.e., ‘first’, ‘second’, ‘third’) within the numerals (i.e., ‘one’, ‘two’, and ‘three’).

[2] However, there is a word /thil/ ‘palm’, a body part, in Kaike. Thus, we may surmise that /thəl/ refers to such body part having twenty counting units in total.

 


Language name and location: Kaike, Nepal [Refer to Ethnologue]

言名称和分布地区凯克, 尼泊尔

 

1.  tiː

21. 

2.  nye

22.  

3.  sum

23. 

4.  li

24.   

5.  ŋā

25.   

6.  ru

26.   

7.  ne

27.   

8.  kyeː

28.   

9.  ɡu

29.   

10. cyu

30.  sum-cyu or nyi-cyu ri cyu ( less often)

11. cyu-tiː

40.  nye-thal

12. cyo-nye

50.  pherāŋ sum-thal or nye-thal ri cyu

13. cyu-sum

60.  sum-thal

14. cyul-li

70.  pherāŋ li-thal ( 80 -10 ?)

15. cyor-ŋā

80.  li-thal

16. cyuː-ruː

90.  pherāŋ ŋā-thal  ( 100 -10 ?)

17. cyon-ne

100. ŋā-thal or kyāmā tiː

18. cyor-kyeː

200.  kyāmā tiː or cyu-thal

19. cyur-ɡu

1000. kyāmā cyu or hajār tiː

20. nicyu or tiːthal  

2000. kyāmā nyi-cyu or hajār nye

 

Linguist providing data and dateː Dr. Isao Honda, University of Nagoya, Osaka, Japan,  May 10, 2009.

供资料的语言学家: 本田伊早夫博士 (日本名古屋短期大学), 2009 年 5 月 10 日.

 

Other comments: Kaike has a vigesimal system. The formation for 50, 70 and 9 (pherāŋ sum-thal, pherāŋ ŋā-thal) is similar to that of the Tshangla language in China and Bhutan, which means 'halfway to 60, 80 and 100' ). Kaike is a tonal language, but the analysis of the suprasegmental system is still under way.


Back >> [ Home ] [ Sino-Tibetan ]